

Reed Bed Use Within Scotch Whisky Distilleries to Treat Wastewater: New Solutions to Help Maximise Performance

Ilgaz Cakin PhD Researcher

Environmental Research Institute, Thurso Ilgaz.cakin@uhi.ac.uk

Supervisors: Dr Mark Taggart, Dr Lucio Marcello, Dr Barbara Morrissey, Dr Paul Gaffney

- Natural and constructed wetlands/reed bed systems can act as 'filtration' systems to clean water, including treating whisky distillery byproducts
- Among distilleries in Scotland, while constructed versions of these systems are in use at some sites, there is significant scope to better understand and optimise their performance

And in so doing, designing new solutions to help maximise the performance of constructed wetlands/reed bed systems.

4 year aim of the project:

To establish relationships between:

- ✓ Treatment performance
- Environmental DNA community
- ✓ Operational and environmental parameters

Ways of Spent Lees Disposal

Advanced Filtration

Parameters	Unit	Laureate Spent Lees	Chevalier Spent Lees
рН		3.96	3.68
Total Suspended Solids	μg/L	2400	1800
Turbidity	NTU	3.2	3.0
Conductivity	μS	340	300
Total Organic Carbon	mg/L	921	1105
Ammonia	μg/L	247	163
Total Oxidised Nitrogen	μg/L	5	6
Soluble Reactive Phosphorus	μg/L	136	163
Dissolved Cu	μg/L	90168	79273
Dissolved Al	μg/L	908	525
Dissolved Zn	μg/L	1231	1237

Evaporation

Pros and Cons of Constructed Wetlands

*

Land requirement due to low hydraulic loading rate Not suitable for large scale

Clogging can lead to insufficient oxygen in the system, thus disturbance of aerobic processes

Decrease of performance in colder weather

Robust for use with heavy metals

Low energy input

Efficient treatment

Provides natural habitat

Simple operation

Constructed Wetlands in Whisky Industry

What is the best way to capture diversity from wetlands?

What is the best sequencing platform and pipeline for genus-level identification? (Miseq & DADA2 vs. MinION & EPI2ME)

What gives spent lees of their toxic characteristics against wetland bacteria and plants? (Cu/Al concentration, pH)

What are the very simple 'passive' processes that need very little workforce input to reduce the toxicity of spent lees?

What is the relationship between bacterial diversity, season, and wetland performance over time?

Which wetland substrate gives the highest bacterial diversity and treatment performance?

What is the best way to capture diversity from wetlands?

What is the best sequencing platform and pipeline for genus-level identification? (Miseq & DADA2 vs. MinION & EPI2ME)

What gives spent lees of their toxic characteristics against wetland bacteria and plants? (Cu/Al concentration, pH)

What are the very simple 'passive' processes that need very little workforce input to reduce the toxicity of spent lees?

What is the relationship between bacterial diversity, season, and wetland performance over time?

Which wetland substrate gives the highest bacterial diversity and treatment performance?

Test of Detachment Protocols Method Development

30 min, 1h, 3h agitation at 150 rpm

Filtering the buffer

18g of pea gravel from 3 different natural wetlands

+ 75 ml PBS

Concentration measurement

eDNA extraction

Test of Detachment Protocols

Results – eDNA Concentrations

environmental research institute

Concentration measurement

Amplicon PCR of bacterial 16s rRNA

Size selective purification

Taxonomic analysis

Library preparation and sequencing

Index PCR

Test of Detachment Protocols

Results – OTU Richness

Average of all three sites

Highlights

Enzyme treatment caused more eDNA yield from gravel surfaces Bacterial diversity did not increase when using enzyme/warmer temperature Considering the most practical application, agitation of gravels with PBS at room temperature for 30 min is enough for eDNA isolation

Alpha Diversity Measures

**

Spearman's Rank Correlations

Phylum and Genus Level

Thurso River

Saint John Loch

Loch More

Highlights

Alpha diversity measures of gravel>fine sediment>filtered water Each layer of the wetland should be sampled for the accurate taxonomic profiling – Correlation decreases towards genus level

Proteobacteria is present in all layers with an abundance above 10%

Bacteriodetes is present in water layer with an abundance above 10% Cyanobacteria is present in water and fine sediments layers with an abundance above 10%

What is the best way for capturing diversity from wetlands?

What is the best sequencing platform and pipeline for genus-level identification? (Miseq & DADA2 vs. MinION & EPI2ME)

What gives spent lees of their toxic characteristics against wetland bacteria and plants? (Cu/Al concentration, pH)

What are the very simple 'passive' processes that need very little workforce input to reduce the toxicity of spent lees?

What is the relationship between bacterial diversity, season, and wetland performance over time?

What is the efficiency of the bacterial seeding method on a constructed wetland to increase treatment performance?

Method Development

	Illumina Miseq - SILVA132 Reads assigned to taxa (%)					ONT minION-NCBI						ONT minION-SILVA132				
						Reads assigned to taxa (%)						Reads assigned to taxa (%)				
	Phylum	Class	Order	Family	Genus	Phylum	Class	Order	Family	Genus	Species	Phylum	Class	Order	Family	Genus
T1_4_30M	99.70%	99.20%	91.90%	75.00%	48.00%	96.60%	83.74%	71.09%	57.01%	30.76%	27.67%	99.59%	98.79%	94.10%	77.49%	45.75%
T2_4_30M	99.70%	98.40%	89.30%	80.00%	46.50%	94.23%	85.08%	68.48%	55.57%	29.09%	25.97%	99.60%	98.78%	94.10%	77.56%	45.72%
T3_4_30M	99.80%	99.50%	93.50%	82.90%	53.90%	99.39%	88.00%	76.80%	64.33%	41.08%	38.34%	99.59%	98.79%	94.15%	77.53%	45.66%
T1_30_30M_	99.80%	99.50%	94.00%	79.90%	52.50%	96.43%	88.22%	80.14%	71.16%	54.40%	52.42%	99.43%	98.17%	93.76%	79.92%	50.28%
T2_30_30M_	99.60%	98.80%	90.90%	80.60%	50.40%	95.66%	87.69%	79.72%	70.94%	54.54%	52.61%	99.43%	98.16%	93.78%	79.89%	50.22%
T3_30_30M_	99.80%	99.60%	93.90%	82.40%	53.10%	96.50%	88.50%	80.63%	71.87%	55.54%	53.62%	99.43%	98.17%	93.75%	79.94%	50.25%
T1_30_1H_E	99.90%	99.50%	94.00%	81.50%	53.80%	96.46%	84.98%	73.69%	61.12%	37.69%	34.93%	99.42%	98.20%	94.29%	81.43%	50.49%
T2_30_1H_E	99.80%	98.80%	91.70%	80.70%	51.60%	96.27%	86.58%	77.05%	66.44%	46.66%	44.33%	99.43%	98.20%	94.31%	81.50%	50.50%
T3_30_1H_E	99.80%	99.60%	94.80%	82.30%	55.20%	97.28%	89.09%	81.03%	72.07%	55.35%	53.38%	99.43%	98.19%	94.31%	81.47%	50.42%
S2_30_1H_E	99.80%	99.50%	96.30%	89.20%	66.90%	97.35%	82.46%	67.81%	51.51%	21.12%	17.54%	99.62%	98.36%	93.31%	82.20%	53.81%
S3_30_1H_E	99.80%	99.50%	96.00%	88.00%	65.00%	97.36%	85.65%	74.13%	61.31%	37.41%	34.59%	99.61%	98.35%	93.35%	82.30%	53.80%
S1_4_1H	99.70%	99.20%	95.70%	85.70%	62.50%	97.79%	79.21%	60.09%	37.43%	17.28%	15.10%	99.45%	98.50%	89.98%	74.20%	47.30%
S2_4_1H	99.70%	98.90%	94.40%	84.60%	62.10%	97.90%	70.77%	49.98%	28.12%	10.12%	8.97%	99.44%	98.49%	89.90%	74.18%	47.35%
S3_4_1H	99.80%	99.60%	96.70%	88.90%	66.20%	97.38%	71.85%	57.44%	43.12%	22.36%	20.44%	99.45%	98.49%	89.94%	74.23%	47.27%
L1_4_3H	100.00%	99.40%	97.60%	64.30%	48.90%	97.19%	68.95%	55.55%	46.51%	25.18%	23.40%	99.29%	98.57%	92.94%	48.27%	29.10%
L3_4_3H	99.90%	99.60%	97.40%	66.90%	48.90%	98.66%	60.13%	45.42%	34.44%	15.28%	13.86%	99.29%	98.55%	92.96%	48.31%	29.06%
L2_30_1H	99.90%	99.30%	96.20%	69.00%	48.40%	98.95%	65.21%	50.67%	37.82%	18.04%	16.46%	99.60%	98.79%	94.13%	77.50%	45.69%
L3_30_1H	99.90%	99.50%	96.20%	70.30%	49.30%	98.32%	69.82%	55.03%	35.76%	16.36%	14.84%	99.50%	98.80%	94.12%	77.49%	45.67%
L1_30_1H_E	99.90%	99.50%	96.70%	68.00%	48.00%	98.70%	59.21%	43.58%	34.99%	15.73%	14.24%	99.47%	98.37%	93.78%	44.68%	27.62%
L3 30 1H E	99.90%	99.60%	96.90%	67.90%	47.70%	98.39%	66.00%	47.99%	34.88%	15.64%	14.16%	99.47%	98.37%	93.77%	44.66%	27.55%
Average	99.81%	99.33%	94.71%	78.41%	53.95%	97.34%	78.06%	64.82%	51.82%	30.98%	28.84%	99.48%	98.45%	93.24%	72.24%	44.68%

Results

environmental

Res<u>ults</u>

environmental

MinION NCBI vs. Illumina SILVA132

Phylum level analysis displayed that the bacterial abundance data was strongly correlated between the two platforms; however, this correlation dropped to moderate at the class level and weak at the genus level

MinION SILVA132 vs. Illumina SILVA132

Phylum and class level analysis displayed that the bacterial abundance was strongly correlated between the two platforms. Genus level abundance was moderately correlated between the two platforms

